
United States Patent and Trademark Office
UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS

P.O.Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO. FILING DATE FIRST NAMED INVENTOR ATTORNEY DOCKET NO. CONFIRMATION NO.

14/391,686 10/09/2014 Doron Levi 84071857 2229

56436 7590 04/26/2017
Hewlett Packard Enterprise
3404 E. Harmony Road
Mail Stop 79
Fort Collins, CO 80528

EXAMINER

VU, TUAN A

ART UNIT PAPER NUMBER

2193

NOTIFICATION DATE DELIVERY MODE

04/26/2017 ELECTRONIC

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Notice of the Office communication was sent electronically on above-indicated "Notification Date" to the
following e-mail address(es):
hpe.ip.mail@hpe.com
chris. mania @ hpe. com

PTOL-90A (Rev. 04/07)

UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

Ex parte DORON LEVI

Appeal 2017-002624
Application 14/391,686
Technology Center 2100

Before JOHN A. JEFFERY, BRUCE R. WINSOR, and
JUSTIN BUSCH, Administrative Patent Judges.

JEFFERY, Administrative Patent Judge.

DECISION ON APPEAL

Appellant appeals under 35 U.S.C. § 134(a) from the Examiner’s

decision to reject claims 1—20. We have jurisdiction under 35 U.S.C. § 6(b).

We affirm.

STATEMENT OF THE CASE

Appellant’s invention tests an integrated software system by

(1) intercepting a method call associated with a corresponding object with a

mock object including an aspect joined to the corresponding object; and

(2) routing the method call to a method associated with the corresponding

object or the programmed behavior associated with the mock object. See

generally Abstract. Claim 1 is illustrative with our emphasis:

1. A testing system for an integrated software system comprising:

Appeal 2017-002624
Application 14/391,686

a mock object comprising machine executable instructions on a
first non-transitory computer readable medium, the mock object
implemented as an aspect wrapped around a corresponding object
within the integrated software system, the mock object to intercept a
method call associated with the corresponding object and to
determine, based on configuration data, whether to route the method
call to the corresponding object or programmed behavior associated
with the mock object; and

a testing agent comprising machine executable instructions on
one of the first non-transitory computer readable medium and a
second non-transitory computer readable medium, the testing agent
comprising the configuration data to instruct the mock object to route
the method call to one of the corresponding object and the
programmed behavior associated with the mock object.

THE REJECTIONS

The Examiner rejected claim 1 under 35 U.S.C. § 103(a) as

unpatentable over Lopian (US 2010/0037100 Al; Feb. 11, 2010), Arcese

(US 2013/0007713 Al; Jan. 3, 2013), and Nan (US 2009/0083578 Al;

Mar. 26, 2009). Final Act. 2-5.1

The Examiner rejected claims 2—11 and 13—20 under 35 U.S.C.

§ 103(a) as unpatentable over Lopian, Arcese, Nan, Ziegler (US

2012/0084754 Al; Apr. 5, 2012), Braude (US 2011/0239194 Al; Sept. 29,

1 Throughout this opinion, we refer to (1) the Final Rejection mailed
December 7, 2015 (“Final Act.”); (2) the Appeal Brief filed April 29, 2016
(“App. Br.”); (3) the Examiner’s Answer mailed October 13, 2016 (“Ans.”);
and (4) the Reply Brief filed December 2, 2016 (“Reply Br.”).

2

Appeal 2017-002624
Application 14/391,686

2011), Gould (US 2012/0173490 Al; July 5, 2012), and Enokido

(US 5,933,634; Aug. 3, 1999). Final Act. 5-21.2

The Examiner rejected claim 12 under 35 U.S.C. § 103(a) as

unpatentable over Lopian, Arcese, Nan, Ziegler, Braude, Gould, Enokido,

and Lui (US 2007/0083813 Al; Apr. 12, 2007). Final Act. 21-23.

The Examiner provisionally rejected claims 5 and 10 on the ground of

non-statutory obviousness-type double patenting over claims 3 and 8 of

Application No. 13/450,788 and Lopian. Final Act. 23—25.

THE OBVIOUSNESS REJECTION OVER LOPIAN, ARCESE, AND
NAN

The Examiner finds that Lopian’s method for validating software

discloses many recited elements of claim 1 including, among other things, a

testing system for an integrated software system comprising (1) a mock

object, associated with paragraph 12 and Figures 7 and 8, implemented as an

aspect “wrapped around” a corresponding real or fake object, associated

with paragraph 10, using weaved code coupled to a mock framework, (2) the

mock object (a) to intercept a method call associated with the corresponding

object and (b) to determine, based on configuration data, whether to route

the method call to the corresponding object or programmed behavior

associated with the mock object, and (3) a testing code responsible for

instructing a mock object using the configuration data. Final Act. 2—A.

2 Although the Examiner omits claims 16—20 from the statement of this
rejection, the Examiner nevertheless discusses claims 16—20 in the
corresponding body of the rejection. Compare Final Act. 5 with Final Act.
20—21. Accordingly, we present the correct claim listing here, and deem the
Examiner’s error in this regard harmless.

3

Appeal 2017-002624
Application 14/391,686

Although the Examiner acknowledges Lopian lacks a testing agent

responsible for instructing the mock object, the Examiner cites Arcese and

Nan for teaching the recited testing agent in concluding that the claim would

have been obvious. Final Act. 4—5.

Appellant argues that neither Lopian’s mock framework nor weaved

code is a mock object implemented as an aspect “wrapped around” a

corresponding object, as claimed. App. Br. 5—9; Reply Br. 2—14. According

to Appellant, Lopian’s mock framework is instead separate from a

production code base, and Lopian’s weaved code is instead embedded within

the production code base. App. Br. 8. Appellant adds that because Lopian’s

weaved code calls the mock framework that is separate from the weaved

code, the weaved code does not intercept a method call associated with a

corresponding object and determine, based on configuration data, whether to

route the method call to the corresponding object or programmed behavior

associated with the weaved code. App. Br. 8—9.

ISSUES

Under § 103, has the Examiner erred by finding that Lopian, Arcese,

and Nan collectively would have taught or suggested:

(1) a mock object implemented as an aspect “wrapped around” a

corresponding object, giving the term its broadest reasonable interpretation

in light of the Specification?

(2) the mock object (a) to intercept a method call associated with the

corresponding object and (b) to determine, based on configuration data,

whether to route the method call to the corresponding object or programmed

behavior associated with the mock object as recited in claim 1?

4

Appeal 2017-002624
Application 14/391,686

ANALYSIS

We begin by construing a key disputed limitation of claim 1 which

recites, in pertinent part, a mock object implemented as an aspect “wrapped

around” a corresponding object within an integrated software system.

Claim construction is an issue of law that we review de novo. Cordis Corp.

v. Boston Scientific Corp., 561 F.3d 1319, 1331 (Fed. Cir. 2009).

The meaning of a claim term may be determined by reviewing a

variety of sources including the claims themselves, dictionaries and treatises,

and the written description, the drawings, and the prosecution history.

Brookhill-Wilk 1, LLC v. Intuitive Surgical, Inc., 334 F.3d 1294, 1298

(Fed. Cir. 2003). Appellant’s Specification does not define the term, but

does note that a mock object “can be injected into the integrated software

system for example, using aspect oriented programming (AOP) frameworks,

intermediate language or byte code weaving, or code instrumentation.”

Spec. 19; see also id. at 125. Appellant’s Abstract describes the mock

object as including an aspect “joined” to a corresponding object. Although

this description informs our construction of the term, it does not limit our

interpretation.

The Examiner and Appellant disagree on the term’s construction and

provide their own respective interpretations. App. Br. 6—9; Reply Br. 2—9,

12; Ans. 2—7. According to the Examiner, “wrapping around” is an act of

substituting or overlapping an object’s original function with a wrapper

function that results in hiding the object’s original function. Ans. 4.

According to Appellant, “wrapping around” is an act of embedding or

containing a corresponding object’s instructions within a mock object’s

5

Appeal 2017-002624
Application 14/391,686

instructions that forms a composite object implemented as instructions on a

non-transitory computer readable medium. Reply Br. 7—9, 12.

As is known in the art, a “wrapper” is an object that encapsulates and

delegates to another object with the aim of altering the another object’s

behavior or interface. Microsoft Computer Dictionary 575 (5th ed.

2002). A “wrapper class” masks a non-object-oriented implementation,

hides software components provided by a third-party, and/or encapsulates

objects with an interface that is not compatible. Dictionary of Computer

Science, Engineering, & Technology 533 (Phillip A. Laplante ed. 2001).

Moreover, to “encapsulate,” as included in both the above definitions, is to

keep the implementation details of a class in a separate file whose contents

need not be known by one using the class. Microsoft Computer

Dictionary 191—92 (5th ed. 2002). Therefore, under its broadest

reasonable interpretation, a mock object implemented as an aspect “wrapped

around” a corresponding object keeps the implementation details of the

corresponding object’s class in a separate file with the aim of altering the

corresponding object’s interface.

Given this construction, we see no error in the Examiner’s reliance on

the functionality of Lopian’s mock version of original code, implemented as

an aspect, that is “wrapped around” the corresponding original code’s

functionality. See Ans. 5—7 (citing Lopian || 39-46, 57—61, 72, 74, 93—99;

Fig. 9); see also Final Act. 2 (additionally citing Lopian || 10, 12, 15, 30—

31, 62; Figs. 1, 3, 7, 8). Notably, Lopian’s production code base is code that

is to be isolated and tested. Lopian || 30—31. Added code weaved into the

production code base is shown in Figure 1. The added code allows hooking

mock objects into the production code base by calling a mock framework

6

Appeal 2017-002624
Application 14/391,686

which decides whether to call the original code or fake the call. Lopian ||

15, 30. Inserting mock objects alters the isolated production code thus

suggesting keeping the original code intact in a separate location.

We also see no error in the Examiner’s finding that Lopian’s mock

version of an original code (a) intercepts a method call associated with a

corresponding object, and (b) determines, based on configuration data,

whether to route the method call to the corresponding object or programmed

behavior associated with the weaved code. See Ans. 7—8 (citing Lopian

Tflf 15, 30, 61, 72); see also Final Act. 3 (additionally citing Lopian H 31—48,

57-60, 62, 65, 94; Figure 6).

Notably, weaver hooks inserted into the base code (Lopian H 15, 30,

61, 72) which, as the Examiner explains, are responsible for (a) intercepting

method calls of the base code by allowing (b) a real-time determination by

the mock framework whether to initiate initial calls or execute fake calls

such that the mock call’s behavior is changed. Despite Appellant’s

arguments that Lopian’s weaved code calls for a mock framework,

(Reply Br. 14), Appellant does not persuasively rebut the Examiner’s

finding of results from inserting the weaver code into the production code

base other than calling a mock framework.

Therefore, we are not persuaded that the Examiner erred in rejecting

claim 1.

7

Appeal 2017-002624
Application 14/391,686

THE OBVIOUSNESS REJECTION OVER LOPIAN, ARCESE, NAN,
ZIEGLER, BRAUDE, GOULD, AND ENOKIDO

Claims 2—7, 9—11, and 13—20

We also sustain the Examiner’s obviousness rejection of claims 2—7,

9-11, and 13—20 over Lopian, Arcese, Nan, Ziegler, Braude, Gould, and

Enokido.

Appellant argues a prima facie case of obviousness has not been

established with respect to claim 9 because the Examiner did not explain

how Zeigler, Braude, Gould, and Enokido apply to claim 9. App. Br. 10.

We, however, are not persuaded. The Examiner has a duty to give

notice of the rejection with sufficient particularity to give Appellant a fair

opportunity to respond to that rejection. See 35 U.S.C. § 132(a). As the

Federal Circuit indicates:

[A]ll that is required of the [Patent] [OJffice to meet its prima
facie burden of production is to set forth the statutory basis of the
rejection and the reference or references relied upon in a
sufficiently articulate and informative manner as to meet the
notice requirement of [35 U.S.C.] § 132.

In re Jung, 637 F.3d 1356, 1363 (Fed. Cir. 2011).

Here, in the Final Rejection, claims 2, 3, and 9 are indicated as being

rejected under 35 U.S.C. § 103(a) as being unpatentable over Lopian,

Arcese, Nan, Zeigler, Braude, Gould, and Enokido in the statement of the

rejection. Final Act. 5. The Examiner finds Lopian teaches nearly every

element of claim 9, but refers to the rationale in claims 2 and 3 for

generating a scenario as a hierarchical data object. Final Act. 15. Claims 2

and 3 are directed to a testing system comprising a scenario to store

configuration data, where the scenario comprises a hierarchical data

8

Appeal 2017-002624
Application 14/391,686

structure, and the Examiner relies upon Zeigler, Braude, Gould, and Enokido

for teaching those limitations under 35 U.S.C. § 103(a). Final Act. 5—8. The

body of the rejection of claim 9 does not explicitly cite Zeigler, Braude,

Gould, and Enokido. Nevertheless, given (1) claim 9’s hierarchical data

object scenario limitation that is commensurate with the scenario recited in

claims 2 and 3, and (2) the Examiner’s directing Appellant to refer to the

rationale in claims 2 and 3 in connection with these commensurate

limitations, the Examiner provides sufficient notice to Appellant that the

Examiner also relies on Zeigler, Braude, Gould, and Enokido in rejecting

claim 9. Therefore, despite the Examiner’s somewhat inartful approach in

rejecting claim 9, the Examiner’s rejection is nonetheless sufficiently

articulate and informative to give Appellant a fair opportunity to respond to

the rejection.

Accordingly, we find the Examiner satisfied 35 U.S.C. § 132 by

setting forth (1) the statutory basis of the rejection of claim 9, and (2) the

references relied upon in a sufficiently articulate and informative manner as

to meet the notice requirement of 35 U.S.C. § 132. By satisfying the

requisite burden of production to justify the rejection of claim 9 under § 132,

the Examiner established aprima facie case.

Regarding the last clause of claim 9, Appellant further reiterates

similar arguments made in connection with independent claim 1 with respect

to Lopian’s alleged shortcomings in this regard, and alleges that the

remaining cited prior art fails to cure those purported deficiencies. App. Br.

10-11. We are not persuaded by these arguments for the reasons previously

discussed.

9

Appeal 2017-002624
Application 14/391,686

Accordingly, we sustain the rejection of claim 9, and claims 2—7, 10,

11, and 13—20 not argued separately with particularity.

Claim 8

We also sustain the Examiner’s obviousness rejection of claim 8,

which recites that the testing system further comprises a data binding model

in which each of a plurality of mock objects are linked to a property bag that

stores data from the mock object.

Appellant does not address—let alone persuasively rebut—the

Examiner’s interpretation of a property “bag” on pages 13 and 14 of the

Answer. In the Answer, the Examiner explains that a property “bag” is a file

or memory storage that generates method calls such that a mock object is

linked to the property “bag.” Ans. 13. The Examiner further explains that a

mock object is linked to a property “bag” because the binding information

collected in a property bag is integrated into a mock call or method. Ans.

13-14.

Therefore, the Examiner’s interpretation has at least a rational basis

that has not been persuasively rebutted. On this record, then, the weight of

the evidence favors the Examiner’s position. Ans. 13—18.

THE OBVIOUSNESS REJECTION OVER LOPIAN, ARCESE, NAN,
ZIEGLER, BRAUDE, GOULD , ENOKIDO, AND LUI

We also sustain the Examiner’s obviousness rejection of claim 12.

Ans. 5—6. Despite nominally arguing these claims separately, Appellant

reiterates similar arguments made in connection with the independent

claims, and alleges that the additionally cited references fail to cure those

10

Appeal 2017-002624
Application 14/391,686

purported deficiencies. App. Br. 13. We are not persuaded by these

arguments for the reasons previously discussed.

THE PROVISIONAL DOUBLE PATENTING REJECTION

Because Application No. 13/450,788 was abandoned on January 26,

2017, the Examiner’s provisional double patenting rejection of claims 5 and

10 (Final Act. 23—25) based on this application is moot and, therefore, not

before us.

CONCLUSION

The Examiner did not err in rejecting claims 1—20 under § 103.

DECISION

The Examiner’s decision rejecting claims 1—20 is affirmed.

No time period for taking any subsequent action in connection with

this appeal may be extended under 37 C.F.R. § 1.136(a)(l)(iv).

AFFIRMED

11

